Subsequence
maths
Given a sequence $a_1, a_2, \ldots, a_n$ a subsequence is $a_{i_1}, a_{i_2}, \ldots a_{i_k}$ is such that $i_j < i_j + 1$ (note this can apply to infinite sequences as well). In other words, it is a subset of the sequence ordered such that the indices are increasing.
Example
For the sequence
$$ 5, 7, 4, -3, 9, 1, 10, 4, 5, 8, 9, 3 $$the following are all subsequences
$$ 5, 7, 4, -3, 9, 1, 10, 4, 5, 8, 9, 3 $$$$ -3, 9, 1, 10 $$$$9, 10, 8$$however
$$ 9, 10, 1 $$is not as the indices are not increasing.