Stirling's approximation

maths

Statement

Stirling’s approximation

For $n \in \mathbb{N}$ we have

$$\sqrt{2\pi n} \left ( \frac{n}{e} \right )^n e^{\frac{1}{12n + 1}} < n! < \sqrt{2\pi n} \left ( \frac{n}{e} \right )^n e^{\frac{1}{12n}}.$$