Modular multiplicative inverse existence
Statement
For $x, N \in \mathbb{Z}$ there exists $y \in \mathbb{Z}$ where $0 < y < N$ such that $x \cdot y = 1$ (mod $N$) if and only if $gcd(x,N) = 1$.
Proof
$\Rightarrow$
Let the greatest common divisor be $gcd(x, N) = y$, so $y \cdot \overline{x} = x$ and $y \cdot \overline{N} = N$ where $0 < \overline{N} \leq N$. Therefore consider the following modular arithmetic
$$x \cdot \overline{N} = \overline{x} \cdot y \cdot \overline{N} = 0 \ (mod \ N).$$As $x$ has an inverse $x^{-1}$ consider
$$ \overline{N} = \overline{N} \cdot 1 = \overline{N} \cdot x \cdot x^{-1} = 0 \cdot x^{-1} = 0 \ (mod \ N).$$Therefore $\overline{N} = N$ and $gcd(x, N) = 1$.
$\Leftarrow$
Consider the set of numbers $S = \{ i \cdot x \ mod \ N \vert 0 \leq i < N\}$. We know $\vert S \vert = N$ and for $s \in S$ we have $0 \leq s < N$. Suppose
$$ i \cdot x = j \cdot x \ (mod \ N).$$for $0 \leq i \leq j < N$. This gives us
$$ (j - i) \cdot x = 0 \ (mod \ N).$$Set $j-i := k$ where $0 \leq k < N$ now we have $k \cdot x = c \cdot N$. However as $gcd(x, N) = 1$ we have $N \vert k \cdot x$ giving $N \vert k$ making $k = 0$.
Therefore all of $S$ are unique, so $1 \in S$ and we have a multiplicative inverse.