Linearly separable
maths
Linearly separable
Two sets of points $X_1, X_2 \subset \mathbb{R}^n$ are linearly separable if there is some hyperplane $P$ defined $w_i, \theta \in \mathbb{R}$ for $1 \leq i \leq n$:
$$P = \left \{x \in \mathbb{R}^n \Bigg \vert \sum_{i=1}^n x_i w_i \geq \theta \right \}.$$Such that $X_1 \subset P$ and $X_2 \cap P = \emptyset$.