Inverse of the Fourier matrix

maths
Lemma

Let $F_n(\omega)$ be a Fourier Matrix then we have

$$F_n(\omega)^{-1} = \frac{1}{n} F_n(\omega^{-1}).$$

Proof

Lets examine

$$F_n(\omega^{-1}) F_n(\omega) := \{m_{i,j}\}.$$

For these terms we have

$$ \begin{align*} m_{j,k} & = \left( 1, \omega^{-j}, \omega^{-2j}, \ldots, \omega^{-(n-1)j} \right ) \cdot \left( 1, \omega^{k}, \omega^{2k}, \ldots, \omega^{(n-1)k} \right )\\ & = \sum_{i=0}^{n-1} \omega^{i(j-k)}\\ & = \sum_{i=0}^{n-1} \left ( \omega^{j-k} \right )^n \end{align*}$$

Which splits into cases if $j = k$ then $\omega^{j-k} = 1$ and we have this sum is $n$. Whereas if $j \not = k$ from the sum of roots of unity we have this sum is 0. Therefore

$$ F_n(\omega^{-1}) F_n(\omega) = n I_n$$

giving us the desired result.