If two variables are independent joint entropy is additive

probability

Statement

Lemma

Suppose we have two independent random variables $X$ and $Y$ over different domains $A$ and $B$. Then the Joint Entropy is additive

$$H(X, Y) = H(X) + H(Y).$$

Proof

This follows from the definitions

$$ \begin{align*} H(X, Y) = & - \sum_{a \in A} \sum_{b \in B} \mathbb{P}[X = a, Y = b] \log(\mathbb{P}[X = a, Y = b])\\ = & - \sum_{a \in A} \sum_{b \in B} \mathbb{P}[X = a]\mathbb{P}[Y = b] \log(\mathbb{P}[X = a]\mathbb{P}[Y = b])\\ = & - \sum_{a \in A} \sum_{b \in B} \mathbb{P}[X = a]\mathbb{P}[Y = b] \log(\mathbb{P}[X = a])\\ & \hspace{0.5 in}- \sum_{a \in A} \sum_{b \in B} \mathbb{P}[X = a]\mathbb{P}[Y = b] \log(\mathbb{P}[Y = b])\\ = & \sum_{b \in B} \mathbb{P}[Y = b] \left ( - \sum_{a \in A} \mathbb{P}[X = a] \log(\mathbb{P}[X = a]) \right )\\ & \hspace{0.5 in}- \sum_{a \in A} \mathbb{P}[X = a] \left ( - \sum_{b \in B} \mathbb{P}[Y = b] \log(\mathbb{P}[Y = b]) \right )\\ = & \ H(X) + H(Y) \end{align*} $$