Greatest common divisor
maths
Greatest Common divisor
Let $x, y \in \mathbb{Z}$ then define the $gcd(x,y)$ to be the largest natural number $n \in \mathbb{N}$ such that $n \vert x$ and $n \vert y$.
Let $x, y \in \mathbb{Z}$ then define the $gcd(x,y)$ to be the largest natural number $n \in \mathbb{N}$ such that $n \vert x$ and $n \vert y$.