Flow
programming
Flow
Given a flow network $(G, c, s, t)$ a flow is an allocation $f: E \rightarrow \mathbb{R}_{\geq0}$ such that the following holds:
- capacity constraint: $f(e) \leq c(e)$ for all $e \in E$, and
- conservation of flow: $\sum_{(a,v) \in E} f(a,v) = \sum_{(v,b)} f(v,b)$ for all $v \in V \backslash \{s, t\}$.
The size of this flow is $size(f) = \sum_{(s,a) \in E} f(s,a) = \sum_{(b,t) \in E} f(b,t)$.