Flow

programming
Flow

Given a flow network $(G, c, s, t)$ a flow is an allocation $f: E \rightarrow \mathbb{R}_{\geq0}$ such that the following holds:

  • capacity constraint: $f(e) \leq c(e)$ for all $e \in E$, and
  • conservation of flow: $\sum_{(a,v) \in E} f(a,v) = \sum_{(v,b)} f(v,b)$ for all $v \in V \backslash \{s, t\}$.

The size of this flow is $size(f) = \sum_{(s,a) \in E} f(s,a) = \sum_{(b,t) \in E} f(b,t)$.